Tâm Đường Tròn Ngoại Tiếp Tam Giác : Lý Thuyết & Các Dạng Bài Tập

Mời quý thầy cô, các em học sinh lớp 9 tham khảo tài liệu Tâm đường tròn ngoại tiếp tam giác.

Đang xem: Tâm đường tròn ngoại tiếp tam giác

Tài liệu tổng hợp toàn bộ kiến thức lý thuyết và các dạng bài tập, phương trình đường tròn, bán kính đường tròn ngoại tiếp tam giác. Qua tài liệu này các em có thêm nhiều tư liệu tham khảo, trau dồi kiến thức để học tốt Toán 9. Vậy sau đây là nội dung chi tiết mời các bạn cùng theo dõi và tải tài liệu tại đây.

Lý thuyết tâm đường tròn ngoại tiếp tam giác

1. Khái niệm đường tròn ngoại tiếp tam giác

Đường tròn ngoại tiếp của tam giác là đường tròn đi qua các đi qua tất cả các đỉnh của tam giác đó. Tâm của đường tròn ngoại tiếp là giao điểm của ba đường trung trực của tam giác đó.

2. Cách xác định tâm đường tròn ngoại tiếp tam giác

– Có 2 cách để xác định tâm đường tròn ngoại tiếp tam giác như sau: 

– Cách 1

+ Bước 1: Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC. Ta có IA=IB=IC=R

+ Bước 2: Tọa độ tâm I là nghiệm của hệ phương trình

*

– Cách 2:

+ Bước 1: Viết phương trình đường trung trực của hai cạnh bất kỳ trong tam giác.

+ Bước 2: Tìm giao điểm của hai đường trung trực này, đó chính là tâm của đường tròn ngoại tiếp tam giác.

Xem thêm: Colleague Là Gì – Nghĩa Của Từ Colleague

– Như vậy Tâm của đường tròn ngoại tiếp tam giác ABC cân tại A nằm trên đường cao AH

Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền

3. Phương trình đường tròn ngoại tiếp tam giác

Viết phương trình đường tròn ngoại tiếp tam giác ABC khi biết tọa độ 3 đỉnh.

Để giải được bài toán viết phương trình đường tròn ngoại tiếp tam giác ta thực hiện theo 4 bước sau:

+ Bước 1: Thay tọa độ mỗi đỉnh vào phương trình với ẩn a,b,c (Bởi các đỉnh thuộc đường tròn ngoại tiếp, nên tọa độ các đỉnh thỏa mãn phương trình đường tròn ngoại tiếp cần tìm)

+ Bước 2: Giải hệ phương trình tìm a,b,c

+ Bước 3: Thay giá trị a,b,c tìm được vào phương trình tổng quát ban đầu => phương trình đường tròn ngoại tiếp tam giác cần tìm.

+ Bước 4: Do A,B,C ∈ C nên ta có hệ phương trình:

*

=> Giải hệ phương trình trên ta tìm được a, b, c.

Xem thêm: The Sun And Moon Tarot Deck, Deck Overview: Sun & Moon Tarot

Thay a, b, c vừa tìm được vào phương trình (C) ta có phương trình đường tròn ngoại tiếp tam giác cần tìm.

4. Bán kính đường tròn ngoại tiếp tam giác

Cho tam giác ABC

Gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB. S là diện tích tam giác ABC

Ta có bán kính đường tròn nội tiếp tam giác ABC là:

*

Bài tập về đường tròn ngoại tiếp tam giác

Dạng 1: Viết phương trình đường tròn nội tiếp tam giác ABC khi biết tọa độ 3 đỉnh

VD: Viết phương trình đường tròn ngoại tiếp tam giác A, B, C biết A(-1;2) B(6;1) C(-2;5)

Cách giải:

Gọi phương trình đường tròn ngoại tiếp tam giác ABC có dạng:

*

Do A, B, C cùng thuộc đường tròn nên thay tọa độ A, B, C lần lượt vào phương trình đường tròn (C) ta được hệ phương trình:

*

Do đó, Phương trình đường tròn ngoại tiếp tam giác ABC tâm I (3;5) bán kính R = 5 là:

*

hoặc

*

Dạng 2: Tìm tâm của đường tròn ngoại tiếp khi biết tọa độ ba đỉnh

Ví dụ: Cho tam giác ABC với A(1;2), B(-1;0), C(3;2). Tìm tọa độ tâm của đường tròn ngoại tiếp tam giác ABC

Hướng dẫn cách giải

Gọi I(x;y) là tâm của đường tròn ngoại tiếp tam giác ABC

*

*

*

Vì I là tâm của đường tròn ngoại tiếp tam giác ABC nên ta có:

*

*

Vậy tọa độ tâm của đường tròn ngoại tiếp tam giác ABC là I(2;-1)

Dạng 3: Tìm bán kính đường tròn nội tiếp tam giác

VD: Tam giác ABC có cạnh AB = 3, AC = 7, BC = 8. Tính bán kính đường tròn ngoại tiếp tam giác ABC

Related Posts